CONNECTED [a,b]-FACTORS IN GRAPHS

MEKKIA KOUIDER, MARYVONNE MAHÉO

Received February 10, 1998 Revised July 31, 2000

In this paper, we prove the following result:

Let G be a connected graph of order n, and minimum degree δ . Let a and b two integers such that $2a \le b$. Suppose $n \ge \frac{(a+b)(a+b-1)}{b}$ and $\delta \ge \frac{n}{1+\left\lfloor \frac{b}{a} \right\rfloor}$.

Then G has a connected [a, b]-factor.

I. Introduction

We consider simple graphs without loops. Let G be a graph of order n, with vertex set V(G) and edge set E(G). We denote by $d_G(x)$ the degree of any vertex x in G, by $\delta(G)$ (resp. $\Delta(G)$) the minimum (resp. maximum) degree of G and if G is not complete then $\sigma_2(G) = \min\{d_G(u) + d_G(v) \mid u, v \in V(G), u, v \text{ nonadjacent }\}.$

Let $a \le b$ be positive integers. Recall that $\left\lfloor \frac{b}{a} \right\rfloor$ (resp. $\left\lceil \frac{b}{a} \right\rceil$) is the greatest (resp. the smallest) integer such that $\left\lfloor \frac{b}{a} \right\rfloor \le \frac{b}{a}$ (resp. $\frac{b}{a} \le \left\lceil \frac{b}{a} \right\rceil$).

A spanning subgraph F of G is called an [a,b]-factor of G if $a \le d_F(x) \le b$ holds for all $x \in V(G)$. If F is connected then the factor is said to be connected. If H is a [a-1,b] factor of G, we say that a vertex x is saturated if $d_H(x) \ge a$.

Many authors have worked on [a,b]-factors as it can be seen in the bibliography of [1]. When the connectedness is not required, there exists a sufficient

Mathematics Subject Classification (2000): 05C70

and necessary condition for the existence of an [a,b]-factor in a graph G [6]: "G has an [a,b]-factor if and only if $b|S|-a|T|+\sum_{v\in T}d_{G\setminus S}(v)\geq 0$, for all disjoint subsets S,T of V(G)."

The concept of connected factors was introduced by M. Kano [4]. This topic is close to the hamiltonian problem as a connected 2-factor is obviously an hamiltonian cycle. On the other hand, we remark that a connected k-factor is a connected k-regular spanning subgraph.

In [3], M. Kano gives the following conjecture:

"Let $2 \le a < b$ be integers and G be a connected graph with $\delta(G) \ge a$ and $n \ge a + b + 1$. If $\sigma_2(G) \ge \frac{2an}{a+b}$, then G has a connected [a,b]-factor."

Counterexamples to this conjecture have been given by Y. Li and M. Cai [5], proving that the bound a+b+1 is too low.

In this paper, we prove the conjecture under the stronger condition: $\delta(G) \ge \frac{n}{1+\left|\frac{b}{a}\right|}$.

II. Existence of a connected [a,b]-factor in a graph

Case a=2

M. Kano announced that he proved the following result [3], however the proof has never been published.

Theorem 2.1. Let $b \ge 3$ be an integer and let G be a connected graph of order n and minimum degree $\delta \ge 2$.

If $\sigma_2(G) \ge \frac{4n}{b+2}$, then G has a connected [2,b]-factor.

This theorem is a corollary of one of our results [7] that we give below.

Theorem A. Let G be a 2 edge-connected graph, $b \ge 2$ be an integer. Suppose $\sigma_2(G) \ge \frac{4n}{b+2}$, then G has a 2 edge connected [2,b]-factor.

Proof of the Theorem 2.1. The proof is by induction on the number r of cutedges of G.

If r=0, thus G is 2 edge-connected and we are done by Theorem A.

Suppose now $r \ge 1$. Let xy be a cut-edge between two components C_1 and C_2 and as $\delta \ge 2$, no one of these components is reduced to a single vertex. We contract the edge xy into a vertex z. We get a graph G_1 with (r-1)

cut-edges. no degree has decreased, so the induction hypothesis is fulfilled, and G_1 has a [2,b]-connected factor F_1 .

The edges of F_1 , joined to the edge xy induce a connected factor F in G. We have $2 \le d_{F_1}(z) \le b$. Then, by the connectivity of F_1 , we get $d_F(x) \ge 2$, $d_F(y) \ge 2$, and $d_F(x) + d_F(y) - 2 \le b$ so $d_F(x) + d_F(y) \le b + 2$. Thus F is a [2,b]-connected factor.

Case $b/a \in \mathbb{N}$

Theorem 2.2. Let a and b be two integers such that $2 \le a < b$, a divides b. Let G be a connected graph of order n, and minimum degree δ .

If (i)
$$n \ge \frac{(a+b)(a+b-1)}{b}$$
 and (ii) $\delta \ge \frac{an}{a+b}$,

then G has a connected [a,b]-factor.

Let us give first two remarks.

Remark 1. The bound on δ is best possible. Let a and b be two integers, such that a divides b, $p \ge 1$ and $q = \frac{b}{a}p + 1$. Then $p = \frac{a(q-1)}{b}$. Consider the graph $K_{p,q}$ and note that its minimum degree is equal to $p < \frac{aq}{b} < \frac{an}{a+b}$. The difference between $\frac{an}{a+b}$ and p is tight: $\frac{an}{a+b} - p = \frac{a}{a+b} < 1$. The condition (i) is easily fulfilled. On the other hand, if e is the number of edges of a connected [a,b]-factor in the graph, it is clear that $qa \le e \le pb$ holds, which contradicts the choice of p and q. So, $K_{p,q}$ has no [a,b]-factor.

Remark 2. We now show that the bound on n in the theorem is best possible when the bound on δ is fixed.

Suppose that a+b divides n and $\frac{bn}{a+b}$ odd. Let G be a graph the vertex set of which consists of two parts, A of cardinality $\frac{an}{a+b}-1$ and B of cardinality $\frac{bn}{a+b}+1$; we join A and B by a complete bipartite graph and we add a perfect matching in B. Thus G has n vertices and $\delta = \frac{an}{a+b}$.

Suppose G contains an [a,b]-factor F. In F, each vertex of B sends at least a-1 edges towards A. On the other hand, there exist at most b|A| edges in F going out of A. Thus we obtain:

$$(a-1)|B| \le b|A|$$
, so $(a-1)\left(\frac{bn}{a+b}\right) \le b\left(\frac{an}{a+b}-1\right)$, which gives the condition $n \ge \frac{(a+b)(a+b-1)}{b}$.

Proof of the theorem. For a=2, the result is true by Theorem 2.1. From now on, let $a \ge 3$.

Note that $b \ge 2a \ge a+3$, since $b/a \in \mathbb{N}$. We prove the theorem by induction on a.

Suppose that the result is true for the integer a-1 and for any $b \ge 2a-2$. From (ii), $\delta(G) \ge \left\lceil \frac{an}{a+b} \right\rceil = \left\lceil \frac{(a-1)n}{(a-1)+(b-b/a)} \right\rceil$, where a-1 divides b-b/a.

By the induction hypothesis, we obtain that G has a connected [a-1,b-b/a]-factor, say F_0 . For each [a-1,b]-factor F, we set $X_F = \{x | d_F(x) = a-1\}$. We add edges to F_0 in order to obtain a larger connected [a-1,b]-factor, say F_1 , with the following constraints:

- (1) X_{F_1} is of minimum cardinality among all the X_F , where F is any connected [a-1,b]-factor F such that $E(F_0) \subset E(F)$;
 - (2) if the assertion (1) is satisfied, then $|E(F_1)| |E(F_0)|$ is minimum.

Let X (resp. Y, Z) denote the set of vertices whose degree in F_1 is a-1 (resp. b, between a and b-1). Note that, by the minimality of |X|, there is no edge of $G \setminus F_1$ between X and Z.

If $X = \emptyset$, then the result is proved. Otherwise, we choose a vertex x_1 in X.

Inequalities (i) and (ii) imply

(*)
$$\delta \ge \left\lceil \frac{a(a+b-1)}{b} \right\rceil = a + \left\lceil \frac{a(a-1)}{b} \right\rceil \ge a+1$$

thus x_1 has at least two incident edges not in F_1 and we can suppose that the corresponding neighbors have degree b in F_1 otherwise we can increase the degree of x_1 by one.

Let Y_1 be the subset of Y consisting of the neighbors of x_1 in $G \setminus F_1$, and $Y_2 = Y \setminus Y_1$. Denote by Z_1 the set of vertices in Z of degree a in F_1 and $Z_2 = Z \setminus Z_1$.

To prove now the result, we need some claims.

For any factor F and $u \in V(G)$, denote by $\Delta_F(u)$ the integer $d_F(u) - (b-b/a)$ and $\Delta_F = \sum_{\Delta_F(u)>0} \Delta_F(u)$. Note that $(u \in Z_1 \cup X \text{ or } d_F(u) = a+1)$ implies $\Delta_F(u) \leq 0$.

Claim 1.
$$|Z| \ge |Z_1| \ge \frac{b}{a}|Y|$$
.

Proof. From F_0 to F_1 , the degrees of the vertices in Y increase by exactly b/a. By (2):

- —there is no edge of $F_1 \setminus F_0$ inside $Y \cup Z_2$.
- —for each $u \in Y \cup Z_2$, at least $\Delta_{F_1}(u)$ edges in $F_1 \setminus F_0$, incident to u have their other extremity in Z_1 .

As the minimum degree in F_0 is (a-1), each vertex of Z_1 is incident to at most one edge of $F_1 \setminus F_0$. So, in particular, we have

$$|Z_1| \ge \sum_{y \in Y} \Delta_{F_1}(y) \ge \frac{b}{a}|Y|.$$

Let us define property \mathcal{P} :

For any connected [a-1,b]-factor F, we can define a partition of V(G) into X,Y,Z as in F_1 .

We say that F has **property** \mathcal{P} if F satisfies the following two assertions:

- α) For each vertex $u \in V(G)$, we can define a set $Z(u) \subset Z_1 \cap N_F(u)$ such that these sets satisfy: $Z_F = \sum_{u \in V(G)} |Z(u)| \ge \Delta_F$;
 - β) If $u \neq u'$ then $Z(u) \cap Z(u') = \emptyset$.

For the factor F_1 , set $Z(u) = N_{F_1 \setminus F_0}(u)$ if $\Delta_{F_1}(u) > 0$ and $Z(u) = \emptyset$ if $\Delta_{F_1}(u) \leq 0$. Then F_1 satisfies property \mathcal{P} by the proof of Claim 1.

We consider now a connected factor F satisfying \mathcal{P} and furthermore, among all the factors satisfying \mathcal{P} , F is chosen such that:

- (1) |X| is minimum;
- (2) the assertion (1) being satisfied, |E(F)| is minimum.

Note that this factor exists, as F_1 has property \mathcal{P} .

It follows from property \mathcal{P} for F that the inequalities (**) are still true and Claim 1 is again satisfied; thus we have:

(***)
$$|Y| < \frac{an}{a+b}$$
, otherwise $|Y| + |Z| \ge n$ and $X = \emptyset$.

Remark. In all further constructions (Claims 2 to 7), the sets X, Y, Z are modified, and we **need to verify property** \mathcal{P} at each time so that Claim 1 is satisfied and thus **inequality** (***) is still true.

Let $x \in X$ and $Y_1 = N_{G \setminus F}(x)$. Note that $Y_1 \subset Y$, otherwise, if xu is an edge not in F, with $u \in X \cup Z$, we saturate x, we put x in Z(u) and \mathcal{P} is still satisfied.

We denote by δ_0 the bound $\left\lceil \frac{an}{a+b} \right\rceil$, and set $|Y| = \delta_0 - s$ and $|Y_1| = \delta_0 - s_1$. Thus $1 \le s \le s_1$. As $\delta_0 \le d_G(x) = d_F(x) + d_{G \setminus F}(x) = a - 1 + |Y_1|$, we get $s_1 \le a - 1$. Furthermore, we recall that $|Y_1| \ge 2$ as $\delta \ge a + 1$ (inequality (*)).

Claim 2. Y_1 is a stable set in F, $Y \cup Z_2$ is a forest in the factor F and there is no cycle in F with an edge inside Y_2 .

Proof. If there exists an edge in F between 2 vertices of Y_1 , say u and v, we delete this edge and add xu and xv, thus we get another connected factor

satisfying property \mathcal{P} with smaller |X|, a contradiction with the minimality of |X|.

If we have a cycle with an edge internal to $Y \cup Z_2$, we suppress this edge then we have a contradiction with the minimality of |E(F)|.

Denote by $\epsilon_F(U,V)$ the number of edges in F adjacent to both two disjoint subsets U and V. Let \mathcal{F}_Y be the remaining of the forest in F, constructed on the vertices of Y after deletion of the trivial components contained in Y_1 . Let $|\mathcal{F}_Y|$ be its size, p be the number of its components and $p_1 = |V(\mathcal{F}_Y) \cap Y_1|$.

Claim 3.

- 1) Any component γ of the forest \mathcal{F}_Y has at most one vertex in Y_1 and $|\mathcal{F}_Y| = |Y_2| p + p_1$.
- 2) Let $\{y_1\} = \gamma \cap Y_1$ (when y_1 exists), then any path $P_F(x,\gamma)$ in F reaches γ in y_1 .
 - 3) $\epsilon_F(x,Y) + |\mathcal{F}_Y| \leq |Y_2|$.

Proof. 1) If $V(\gamma) \cap Y_1$ contains $\{y_1, y_2\}$, we may suppose that a path $P_F(x, \gamma)$ reaches γ in $u \neq y_1$; then we add xy_1 to the factor F and we delete the edge y_1t contained in the path $P_F[y_1, u]$ in the component γ . We add x to $Z(y_1)$, then $Z(t), \Delta(t)$ and Z(x) do not change. The new connected factor has again the property \mathcal{P} . We have a contradiction with the minimality of |X|.

The equality is immediate.

- 2) If the assertion 2) is not true, then let u be the vertex where $P_F(x,\gamma)$ reaches γ . As in the first part, in the component γ , we delete the edge incident to y_1 in the path joining y_1 to u; then we add xy_1 . We get a contradiction with the minimality of |X|.
- 3) The assertion 3) is equivalent to $\epsilon_F(x,Y) \leq p-p_1$. In the factor F the vertex x is not adjacent to two vertices of the same component γ of \mathcal{F}_Y (by the condition (2) of the definition of F). We show, if $\gamma \cap Y_1 \neq \emptyset$, that the vertex x is not adjacent to γ if $\gamma \cap Y_1 \neq \emptyset$. Let us set $\{y_1\} = \gamma \cap Y_1$; we know that $xy_1 \notin E(F)$. In fact, if x is adjacent to a vertex $v \in \gamma$, we add the edge xy_1 , and remove the edge y_1u , which belongs to the path $P_F[y_1, v]$ in γ . The property \mathcal{P} is still satisfied and we have a contradiction with the minimality of |X|.

Claim 4. Let $z \in \mathbb{Z}_2$. Then $\epsilon_F(z, Y_1) \leq 1$.

Proof. Suppose that $\epsilon_F(z, Y_1) \geq 2$. Let u and v be the two neighbors of z in F belonging to Y_1 . Then, in F, there exists a path between x and z,

avoiding for example zu. We remove zu, and add xu to F. Since only $\Delta(z)$ decreases, Z(u), $\Delta(u)$ and Z(z) remain the same. We have a contradiction with the minimality of |X|.

Claim 5. In the factor F, let C_1 be the subgraph generated by the components of \mathcal{F}_Y intersecting Y_1 .

- 1) Let $z \in \mathbb{Z}_1$. Then $\epsilon_F(z, \mathcal{C}_1 \cap Y_2) \leq 1$.
- 2) Let $z \in \mathbb{Z}_2$. Then $\epsilon_F(z, \mathcal{C}_1 \cup Y_1) \le 1$ and $|\mathcal{F}_Y| + \epsilon_F(z, Y) \le |Y_2| + 1$.

Proof. Note that any vertex z of Z is not adjacent to two different vertices of the same component of the forest (by Claim 3).

 \circ Suppose that $z \in Z$ is adjacent to u in a component γ , and to u' in a second component γ' of \mathcal{C}_1 with $u, u' \in Y_2$. In F, consider a path from x to $A = \gamma \cup \gamma' \cup \{z\}$ and we may assume, w.l.o.g. that this path reaches A in z or γ' . Let $\{y_1\} = \gamma \cap Y_1$ and $\{y_1'\} = \gamma' \cap Y_1$. Then we delete the edge y_1t in $P_{\gamma}(y_1, u)$ from the factor F and we add the edge xy_1 . The factor we get is still connected and satisfies \mathcal{P} as $|Z(y_1)| + |Z(t)|$ increases and $\Delta(y_1) + \Delta(t)$ decreases and we have a contradiction with the minimality of |X|.

Thus we proved that for any $z \in Z$, $\epsilon_F(z, C_1 \cap Y_2) \leq 1$. In particular, the inequality is satisfied by any $z \in Z_1$.

 \circ Suppose there exists $z \in Z_2$ such that $\epsilon_F(z, \mathcal{C}_1 \cup Y_1) \geq 2$. By part 1), two neighbors of z are not both in Y_2 . By Claim 4, $\epsilon_F(z, Y_1) \leq 1$. So, in F, z has at least a neighbor u' in $\mathcal{C}_1 \cap Y_2$ and another one, u, in Y_1 . Thus $u' \in \gamma' \cap Y_2$ where γ' is a component of \mathcal{C}_1 .

In both cases, $u \in \mathcal{C}_1 \cap Y_1$ or otherwise, we set $A = \gamma' \cup \{u\} \cup \{z\}$ and $y'_1 = \gamma' \cap Y_1$.

If a path $P_F(x, A)$ reaches A in z or u, we delete the edge y'_1t in the path $P_F[y'_1, u']$ contained in γ' and we add xy'_1 .

If $P_F(x,A)$ reaches A in y'_1 , we delete the edge zu and we add xu.

In any case we saturate x and we verify that Δ_F remains the same or decreases by one and Z_F does not decrease. So, the new connected factor satisfies \mathcal{P} , and we have a contradiction with the minimality of |X|.

Then, we immediately get, for $z \in \mathbb{Z}_2$

$$|\mathcal{F}_Y| + \epsilon_F(z, Y) \le (|Y_2| - p + p_1) + (p - p_1 + 1) = |Y_2| + 1.$$

Claim 6.

- 1) For any $x' \in X$, (1) $\epsilon_F(x',Y) \leq (a-s-1)$.
- 2) $\epsilon_{G\backslash F}(z,G\backslash Y)=0$ for any $z\in Z_1$ such that $\epsilon_F(z,Y_1)\geq 2$.

(2)
$$\epsilon_F(z_1, Y) \leq a - s$$
 for any $z_1 \in Z_1$.

Proof. 1) For each $x' \in X$, $d_F(x') = a - 1$, $|Y| = \delta_0 - s$. All edges x't of G with $t \notin Y$ are edges of F; otherwise we add an edge x't, with $t \notin Y$, we put x' in Z(t) and then obtain a new factor F'.

 \circ if $t \in Z_1$ and $t \in Z(u)$ for some u, $\Delta_{F'} = \Delta_F$ and |Z(u)| + |Z(t)| invariant; \circ if $t \notin Z_1$, Δ_F increases by at most 1, and |Z(t)| increases by 1. Thus the new connected factor F' satisfies property $\mathcal P$ and we get a contradiction with the minimality of |X|. So, $\delta_0 \le d(x') = d_Y(x') + d_{G\backslash Y}(x') \le \delta_0 - s + d_{G\backslash Y}(x')$ thus

(1)
$$d_{G\setminus Y}(x') \ge s$$
 and $\epsilon_F(x',Y) \le a-1-s$.

- 2)-a) Let u_1 and u_2 be two neighbors of z in Y_1 , in the factor F. Suppose zz', with $z' \notin Y$, is an edge of $G \setminus F$. A path $P_F(x,z)$ does not use for example zu_1 . We delete zu_1 from the factor F, add xu_1 and zz' and put x into $Z(u_1)$, then we obtain a new connected factor F'. We have two cases:
- \circ If z' was in Z_2 , $\Delta(z')$ increases by one, Δ_F by at most 1, and $|Z(u_1)|$ increases by 1.
- \circ If z' was in Z_1 , it is now in Z_2 with $\Delta_{F'}(z') \leq 0$ and then $\Delta_{F'} = \Delta_F$. If z was in $Z(u_1)$, we put it in $Z(u_2)$, and $Z_{F'} = Z_F$.

If z' was in Z(v) for some v, Z_F remains the same or increases by 1.

In any case, \mathcal{P} is still satisfied by F' and we obtain a contradiction with the minimality of |X|.

-b) Let $z_1 \in Z_1$. Suppose $\epsilon_F(z_1, Y) \ge a - (s-1) \ge s_1 - s + 2 = |Y_2| + 2$. Then z_1 has at least two neighbors in Y_1 in the factor F. As $|Y| = \delta_0 - s$, we have $\epsilon_G(z_1, G \setminus Y) \ge s$. As $d_F(z_1) = a$, we have $\epsilon_F(z_1, G \setminus Y) \le s - 1$. Thus there is at least one edge of $G \setminus F$, say zz' with $z' \notin Y$, a contradiction with the first part of 2). So we have inequality (2).

Claim 7.

- 1) Let $z \in Z_1$ such that $\epsilon_F(z, Y_1) \ge 2$. Then $\epsilon_G(z, \mathcal{F}_Y) \le p$.
- 2) If $z \in Z_1$ and $\epsilon_F(z, Y_1) \neq 1$, then $|\mathcal{F}_Y| + \epsilon_F(z, Y) \leq |Y_2| + a s_1$.

Proof. 1) The proof is by contradiction so z has at least two neighbors in the same component γ of \mathcal{F}_Y . Let v be the vertex of the component γ where a path $P_F(z,\gamma)$ reaches γ . If z is adjacent in G to a vertex $u \in \gamma$, $u \neq v$, then zu is in $G \setminus F$ by Claim 2. Let y_1 and y'_1 be two vertices of Y_1 which are neighbors of z in the factor F.

Case 1.
$$z \notin P_F(x, \gamma)$$
.

We may suppose that $P_F(z,\gamma)$ does not use zy_1 . We delete from the factor F the edge zy_1 , and we add xy_1 . On the other hand, we add zu and delete the edge uu' of the path joining u and v in the component γ . The factor F remains connected. We put x in $Z(y_1)$ and we can suppose that z is now in $Z(y_1')$.

Case 2. $z \in P_F(x, \gamma)$.

We may suppose that zy_1 is not in $P_F(x,\gamma)$ or that this edge is not in the segment [x,z] of the path. We do the same constructions as in the previous case.

In any case, it is easy to verify that Z_F increases by one and that Δ_F decreases by one. We have a contradiction with the minimality of |X|.

2) If $\epsilon_F(z, Y_1) = 0$, the inequality is trivial.

Suppose now $\epsilon_F(z, Y_1) \ge 2$.

We have $\epsilon_F(z,Y) = \epsilon_F(z,Y \setminus \mathcal{F}_Y) + \epsilon_F(z,\mathcal{F}_Y)$ and $|V(Y \setminus \mathcal{F}_Y)| = \delta_0 - (s_1 + p_1)$ thus, in G, z has at least $(s_1 + p_1)$ neighbors out of the set $Y' = Y \setminus \mathcal{F}_Y$. So

$$\epsilon_F(z, G \setminus Y') \ge (s_1 + p_1) - \epsilon_{G \setminus F}(z, G \setminus Y')$$

and then,

$$\epsilon_F(z, Y') = a - \epsilon_F(z, G \setminus Y') \le a - (s_1 + p_1) + \epsilon_{G \setminus F}(z, G \setminus Y').$$

We obtain:

$$\epsilon_F(z,Y) = \epsilon_F(z,Y') + \epsilon_F(z,\mathcal{F}_Y) \le a - (s_1 + p_1) + \epsilon_{G \setminus F}(z,G \setminus Y') + \epsilon_F(z,\mathcal{F}_Y).$$

But $\epsilon_{G\backslash F}(z,G\backslash Y') = \epsilon_{G\backslash F}(z,\mathcal{F}_Y)$ as $\epsilon_{G\backslash F}(z,G\backslash Y) = 0$ by Claim 6 2). We get immediately, using part 1) of the Claim:

$$\epsilon_F(z,Y) \le (a - (s_1 + p_1)) + \epsilon_G(z,\mathcal{F}_Y) \le (a - s_1) + (p - p_1).$$

So

$$\epsilon_F(z,Y) + |\mathcal{F}_Y| \le |Y_2| + a - s_1.$$

End of the proof of the theorem.

We have the equalities:

$$b|Y| = \sum_{y \in Y} d_F(y) = \epsilon_F(Y, X) + \epsilon_F(Y, Z) + 2|\mathcal{F}_Y|.$$

By Claim 6, we have $\epsilon_F(Y,X) \leq (a-s-1)|X|$ and $\epsilon_F(Z_1,Y) \leq (a-s)|Z_1|$ and by Claim 3,

(3)
$$\epsilon_F(x,Y) + |\mathcal{F}_Y| \le |Y_2|.$$

 \circ Suppose first that $|Z_2| \ge 1$. Let z be some vertex in Z_2 .

(4)
$$\epsilon_F(z, Y) + |\mathcal{F}_Y| \le |Y_2| + 1 \le |Y_2| + (a - s_1).$$

Thus,

$$b|Y| \le (a-s-1)(|X|-1) + \epsilon_F(x,Y) + (s_1-s+1)(|Z_2|-1) + \epsilon_F(z,Y) + (a-s)|Z_1| + 2|\mathcal{F}_Y|.$$

Using inequalities (3) and (4), we get:

$$b|Y| \le (a-s)(|X|+|Z_1|) - |X| - (a-s-1) + (s_1-s+1)|Z_2| - (s_1-s+1) + 2|Y_2| + 1.$$

Thus $b|Y| \le (a-s)(n-|Y|-|Z_2|)-|X|+(s_1-s+1)|Z_2|+(s_1-a+1)$, which leads to:

$$(b+a-s)(\delta_0-s) \le (a-s)n - (1+|Z_2|)(a-s_1-1) - |X|$$

i.e.

$$\frac{bsn}{a+b} \le s(a+b-s) - (1+|Z_2|)(a-s_1-1) - |X|$$

and then

$$n \le \frac{(a+b-s)(a+b)}{b} \left(1 - \frac{(1+|Z_2|)(a-s_1-1)+|X|}{s(a+b-s)}\right).$$

If $|X| \neq \emptyset$, we obtain $n < \frac{(a+b-1)(a+b)}{b}$, a contradiction with the hypothesis (i) of the theorem.

 \circ Suppose now that $|Z_2|=0$.

By Claim 1, Z_1 is not empty. If there exists a vertex z in Z_1 such that $\epsilon_F(z, Y_1) \neq 1$, we apply 2) of Claim 7 and we have the same calculations as in the previous case.

Otherwise, $\epsilon_F(z, Y_1) = 1$ holds for each $z \in Z_1$, and $\epsilon_F(z, Y) \leq (p - p_1) + 2$ by part 2) of Claim 5.

Thus

(5)
$$\epsilon_F(z,Y) + |\mathcal{F}_Y| \le |Y_2| + 2$$

holds.

Then we obtain:

$$b|Y| \le (a-s)(|X|+|Z_1|) - (|X|+1) - 2(a-s) + \epsilon_F(z,Y) + \epsilon_F(x,Y) + 2|\mathcal{F}_Y|.$$

Applying inequalities (3) and (5), we get

$$b|Y| \le (a-s)(n-|Y|) - (|X|-1) - 2(a-s) + 2(|Y_2|+1).$$

Thus $n \le \frac{(a+b-s)(a+b)}{b} \left(1 - \frac{2(a-s)+(|X|-1)-2(s_1-s+1)}{s(a+b-s)}\right)$ which can be written as

$$n \le \frac{(a+b-s)(a+b)}{b} \left(1 - \frac{2a-2s_1 + (|X|-1)-2}{s(a+b-s)}\right),$$

and the conclusion is the same as previously, except eventually in the case when |X|=1, $s_1=a-1$, s=1.

We study this last case:

For any $z \in Z_1$, $\epsilon_F(z, Y_1) = 1$, $|Y| = \delta_0 - 1$ and $|Z_1| = n - \delta_0$. So:

$$\epsilon_F(Y_1, Z_1) = |Z_1| = n - \delta_0 \le n - \frac{an}{a+b} = \frac{bn}{a+b}$$

 $\epsilon_F(Y_1, Y_2) \le |Y_2| - p + p_1 = a - 2 - p + p_1 \le a - 2$
 $\epsilon_F(x, Y_1) = 0.$

Thus $\epsilon_F(Y_1, G \setminus Y_1) = b|Y_1| \le \frac{bn}{a+b} + a - 2$ which gives

$$b\left(\frac{an}{a+b}-1\right) \le b(\delta_0-1) \le \frac{bn}{a+b} + a - 2$$

i.e.

$$n\left(\frac{ab}{a+b} - \frac{b}{a+b}\right) \le a+b-2,$$

and finally

$$n \le \frac{(a+b-2)(a+b)}{b(a-1)},$$

a contradiction with the hypothesis (i) on n.

Case $b/a \notin \mathbf{N}$

Theorem 2.3. Let a and b two integers such that $4 \le 2a < b$.

Let G be a connected graph of order n, and minimum degree
$$\delta$$
. If (i) $n \ge \frac{(a+b)(a+b-1)}{b}$ and (ii) $\delta \ge \frac{n}{1+\left|\frac{b}{a}\right|}$,

then G has a connected [a,b]-factor.

Proof. Let $b_1 = a \left\lfloor \frac{b}{a} \right\rfloor$, then $2a \leq b_1 < b$ and a divides b_1 . On the other hand, $\delta \ge \frac{an}{a+b_1}$ and $n \ge \frac{\bar{(a+b)(a+b-1)}}{b} \ge \frac{(a+b_1)(a+b_1-1)}{b_1}$.

The previous theorem allows us to say that G has a connected $[a, b_1]$ factor that is also a connected [a, b]-factor.

References

- [1] J. Akiyama and M. Kano: Factors and Factorizations of Graphs—A survey, Journal of Graph Theory, 9 (1985) 1-42.
- J. A. BONDY: Basic Graph Theory: Paths and circuits, Handbook of Combinatorics, Vol.1, R.L. Graham, M. Grötschel, L. Lovász, 3–112.
- M. Kano: Some current results and problems on factors of graphs (preprint).
- [4] M. KANO: A sufficient condition for a graph to have [a, b]-factor, Graphs and Combinatorics, 6 (1990) 245–251.
- [5] Y. Li and M. Cai: A degree condition for a graph G to have [a,b]-factors, Journal of Graph Theory, (1998), 1–6.
- [6] L. Lovász: Subgraphs with prescribed valencies, Journal of Combinatorial Theory, **8** (1970) 391–416.
- [7] M. KOUIDER, M. MAHÉO: Two-edge-connected [2,k]-factors in graphs, to appear in J. C. M. C. C.

Mekkia Kouider

URA 410 L.R.I., Bât. 490, Universite Paris-Sud 91405 Orsay, France

km@lri.fr

Maryvonne Mahéo

URA 410 L.R.I., Bât. 490, Universite Paris-Sud 91405 Orsay, France maheo@lri.fr